Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation
نویسندگان
چکیده
Lithium ion batteries have been one of the major power supplies for small electronic devices since the last century. However, with the rapid advancement of electronics and the increasing demand for clean sustainable energy, newer lithium ion batteries with higher energy density, higher power density, and better cyclic stability are needed. In addition, newer generations of lithium ion batteries must meet the requirements of low and easy fabrication cost and be free of toxic materials. There have been many novel approaches to gain high energy storage capacities and charge/discharge rates without sacrificing the battery cyclic life. Nanostructured electrodes are seemingly the most promising candidate for future lithium ion batteries. Modification of the electrode surface chemistry and the control of appropriate crystallinity are also reported to improve the electrode intercalation capabilities. The study of appropriately designed nanostructures, interfaces and crystallinity has also promoted and is accompanied with the development of thin film electrodes without the addition of binders and conductive carbon that are typically used in the fabrication of traditional lithium ion battery electrodes, simplifying the electrode fabrication process and enhancing electrode storage density. In this perspective, we summarize and discuss the efforts of fabricating nanostructures, modifying surface chemistry and manipulating crystallinity to achieve enhanced lithium ion intercalation capacities, rate capabilities and cyclic stability, as well as the direct fabrication of binderless film electrodes with desirable nanoand microstructures.
منابع مشابه
An Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes
Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...
متن کاملEngineering nanostructured electrodes away from equilibrium for lithium-ion batteries
Boosted by the rapid advances of science and technology in the field of energy materials, Li-ion batteries have achieved significant progress in energy storage performance since their commercial debut in 1991. The development of nanostructured electrode material is regarded as one of the key potentials for the further advancement in Li-ion batteries. This feature article summarizes our recent e...
متن کاملElectrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملA MEMS platform for in situ, real-time monitoring of electrochemically induced mechanical changes in lithium-ion battery electrodes
We report the first successful demonstration of an optical microelectromechanical systems (MEMS) sensing platform for the in situ characterization of electrochemically induced reversible mechanical changes in lithium-ion battery (LIB) electrodes. The platform consists of an array of flexible membranes with a reflective surface on one side and a thin-film LIB electrode on the other side. The mem...
متن کاملEnhanced Lithium-Ion Intercalation Properties of V2O5 Xerogel Electrodes with Surface Defects
Enhanced Lithium-Ion Intercalation Properties of V2O5 Xerogel Electrodes with Surface Defects Dawei Liu, Yanyi Liu, Anqiang Pan, Kenneth P. Nagle, Gerald T. Seidler, Yoon-Ha Jeong, and Guozhong Cao* Department of Materials Science and Engineering, University of Washington, Seattle, Washington, United States Department of Materials Science and Engineering, Central South University, Changsha, Chi...
متن کامل